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An approach is outlined for the discussion of the qualitative theory

of infinite dimensional dynamical systems. Retarded functional differential

equations and parabolic partial differential equations are used to ilustratc

the usefulness of the approach and the limitations of our present knowledge.

t 
ocr

1cop,(
\1i1ETE

st Co"



The purpose of this paper is to outline an approach to the development

of a theory of dynamic systems in infinite dimensions which is analogous to

the theory for finite dimensions. The first problem is to find a class for

which there is some hope of classification and yet general enough to include

some interesting applications. My goal has been to discover something about

a class which includes retarded functional differential equations (RFI)),

certain types of neutral functional differential equations (NFDE), parabolic

partial differential equations (parabolic PDE) and some other special PDEI's.

The underlying theory of RFDE's and NFDE's can be found in Hale [7] and para-

bolic PDE's in Henry [14]. For some details of how these equations fit into

the abstract framework below, see Hale [8].

Let X, Y, Z be Banach spaces and let r C r(Y,Z), r > 1, be the

set of functions from Y to Z which are bounded and uniformly continuous

together with their derivatives up through order r. We impose the usual

topology on qr. (In applications, other topologies may be needed; for example,

the Whitney topology.) For each f Egr let Tf(t) : X - X, t : I0, be a

strongly continuous semigroupof transformations on X. For each x E X, we

rsuppose Tf(t)x is defined for t > 0 and is C in x.

We say a point x0 E X has a backward extension if there is a

(p : (-m,0] - X such that (p(O) = x0  and Tf(t)t0(t) = t(t+*) for 0 -. t <

T < 0. If there is a backward extension to through xo, we define T f(t)x 0

(p(t), t < 0. A set M a X is invariant if, for each x E M, Tf(t)x is defined
+f

and belongs to M for t E (-oo). The orbit y (x) through x is defined

as y (x) ='U->Tf(t)x.
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Let

Af ={x E X Tf(t)x is defined and bounded

for t E (-wo)}.

The set A contains much of the interesting information about the semigroup

Tf(t). In fact, it is very easy to verify the following result.

Proposition 1. If Af is compact, then Af is maximal, compact, invariant.

If, in addition, all orbits have compact closure, then Af is a global

attractor. Finally, if Tf(t) is one-to-one on Af, then Tf(t) is a

continuous group on Af.

The first difficulty in infinite dimensional systems is to decide how

to compare two semigroups Tf(t), T (t). It seems to be almost impossible to

make a comparison of any systems on all or even an arbitrary bounded set of

X. If Af is compact, Proposition I indicates that all essential information

is contained in A f* Thus, we define equivalence relative to Af.

Definition 2. We say f is equivalent to g, f v g, if there is a honco-

morphism h: Af - A which preserves orbits and the sense of direction in time.

We say f is structurally stable if there is a neighborhood V of f in

r
r such that g E V implies g ', f. We say f is a bifurcation point if

f is not structurally stable.

The basic problem is to discuss detailed properties of the set Af and

to determine how Af and the structure of the flow on Af change with f.

If Af is not compact, very little is known at this time. It becomes

important therefore to isolate a class of semigroups for which Af is compact,

L-f
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If Tf(t) is an a-contraction for t > 0 and Tf(t) is compact dissipative,

then it was proved by Hale and Lopes [ll] (see, also, Hale [91, Massatt 127,281)

that Af is compact, uniformly asymptotically stable and attracts bowuded sets

if orbits of bounded sets are bounded. We do not define an a-contraction, but

a special case which is very important in the applications is

Tf(t) = Sf(t) + Uf(t), t > 0,

where Sf(t) is a strict contraction for t > 0 and Uf(t) is completely

continuous for t > 0. Compact dissipative means there is a bounded set B in

X such that for any compact set K in X, there is a to = t0 (K,B) such that

Tf(t) K c B, t > tO.

If T f(t) is completely continuous for t > r for some r > 0. then

it was shown by Billotti and LaSalle [1] that Af is compact if Tf(t) is

point dissipative. Other conditions for Af to be compact which are very useful

in the applications have been given recently by Massatt [27,281.

Before proceeding further, we give two examples of semigroups which can

be used as models to illustrate several of the ideas.

k n
Suppose u EJR , x E JRn , Q is a bounded, open set in Jn with smooth

boundary, D is a k x k constant diagonal, positive matrix, A is the

Laplacian operator, and consider the equation

ut  DAu f(x,u,grad u) in il

U (1 on 4.

Other boundary conditions could also be used. Let W = 12 (o) n (Q) beN0'(lflW'zJ e
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the domain of -6 and let X = ~,0 < a < 1, be the domain of the fractional

power (-A) a of -A with the graph norm. Under appropriate conditions Onl

f,u, this equation generates a strongly continuous semigroup T f(t) Oil X

which is compact for t > 0. In this case _r= Cr( (IR k xlR k, IR k). if f

is independent of x, then g-r =Cr (JRk x .1 kn X k). If f depends only onl u,

then _r= Cr ORkIRk). In each of these cases, the theory will be different.

As another example, suppose r > 0, C = C([-,OJlR 1), g2' = (C,1I't ),

r > 1, and consider the RFDE,

~()=f(x )

where, for each fixed t, x t designates the restriction of a function x as

x t(0) = x(t+6), -r < 0 < 0. For any (pE C, let x (p) (t) , t > 0, des ignate

the solution with x0N)= p and define T f(t)(P =x (p) . If this function is

defined for t > 0, then Tf(t) :C -) C is a strongly continuous semigroup

and Tf(t) is completely continuous for t > r if it takes bounded sets to

4 bounded sets.

For differential difference equations

x(t) = f(x(tJ,x(t-r))

x(t) = f(x(t-r))

the space -qr is respectively, Crcl (,I xIn ,fn rn ' O" JR)

We now begin our discussion of the set A f' There are few general

results which are independent of f. However, there is an important one Con-

cerning the dimension.
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Theorem 3. (Mallet-Paret, Mafig) If Af is compact and DxTf(t)x is the

sum of a contraction and a completely continuous operator, then Af has

finite limit capacity.. In particular, Af has finite Hausdorff dimension.

Mallet-Paret 121] proved the part on finite Ilausdorf dimension for the

case in which X is a Hilbert space. Mari6 [24) proved the general case, but

a different type of analysis was required.

This result has some important implications if one uses the results

of Cartwright [3,4] on almost periodic functions. In particular, one can

prove the following result.

Corollary 4. If Af is compact and the hypothesis of Theorem 3 is satisfied,

then there is an integer N = Nf such that, if Tf(t)x is almost periodic in

t, then Tf(t)x is quasiperiodic with frequency base of dimension < N.

Landau and Lifschitz have proposed a principle for the onset of turbulence

which consists in the successive introduction through bifurcation of independent

frequencies in the oscillatory motion. If the motion is known to be described

by the Navier-Stokes equations, then the results of Ladyzenskaya [17] show that

Af is compact and the hypothesis of Theorem 3 is satisfied. Thus, the Landau-

Lifschitz principle cannot be valid as a consequence of Corollary 4.

Other than Theorem 3, there are no general results on A The research

has followed along the lines of considering special types of equations which

lead to the semigroup Tf(t) ; in particular, functional differential equations

and parabolic partial differential equations. On the other hand, to explain

some of the results that are known, it is convenient to pose general questions.

Q.. Is Tft) one-to-one on Af generically in f?

ALt



Q.2. If f is structurally stable, is Tf(t) one-to-one on Af?

Q.3. When is Af a manifold or a finite union of manifolds?

Q.4. Can A be embedded in a finite dimensional manifold genericiLlv
- f

in f?

Q.5. For each x E Aft is Tf(t)x continuously differentiable in

t EIR?

Q.6. Are Kupka-Smale semigroups generic?

Q.7. Are Morse-Smale systems open and structurally stable?

Before discussing specific results, one important observation must be

made. All of the above questions are posed for A This set is much smaller

than X and, thus, the questions have a better chance of being answered.

Also, Q.S is not even meaningful on the whole space for several important

applications.

For Q.1, one-to-oneness of Tf(t) on Af, there is no general result

known. However, for retarded functional differential equations and special

types of neutral functional differential equations, it follows from Nussbaum

[33], Hale [7] that Tf(t) is one-to-one on Af if f is analytic. This is

proved by showing that Tf(t)x is an analytic function of t for each x E Af.

Since (Tf(t)x)() = (Tf(t+e)x)(O) for all 0, this implies x E C([-r,0])

is also analytic. It is easy to construct examples where f is analytic in a

retarded functional differential equation and Tf(t) is not one-to-one on C.

A trivial example is x(t) = 0, t -_ 0, x(t) = (p(t), t E [-1,0], c E C. Non-

trivial examples may be found in Hale 17].

For some types of parabolic equations, the results of Hlenry [141, Miller 1321

III II



(see Manselli and Miller [25] for further references) imply that F f(t) is

one-to-one on all of X. For these equtions, it would be interesting to study

more detailed properties of the solutions on A For example, if f is

analytic, when are the solutions of ut = Au + f(u) in a bounded domain,

with some boundary conditions, analytic in t and the space variable" A

personal communication from D. Henry for one space variable shows that, in

one space dimension, this analyticity holds for all solutions on the unstable

manifold of a hyperbolic equilibrium point. The same conclusion is probably

true for Af.

In a personal communication, J. Mallet-Paret has given an example %here

ff(t) is not one-to-one on Af. However, it is not structurally stable and,

thus, the question Q.2 is posed.

For retarded functional differential equations defined on a compact

manifold M without boundary, which are close in some sense to an ordinary

differential equation (for example, a differential difference equation with

one delay which is small), Kurzweil [161 has shown that Af is diffeomorphic

to I. Oliva [351 has generalized these results giving other conditions which

imply A is diffeomorphic to M. The corresponding problems for parabolic
f

equations have not been discussed. However, there should be some analogue.

For certain gradient systems of parabolic equations, Henry [14,151 has

shown that Af is the union of a finite number of manifolds.

If it is known that the number of critical points is finite and the

w-limit set of every orbit is a hyperbolic equilibrium point, then Af will be
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u
the union of a finite number of manifolds; namely, Af U1 Wf(u) where

Wf(a i )  is the unstable manifold (necessarily finite dimensional) of the

equilibrium point a..
I

For Q.5, the differentiability of Tf(t)x in t for x E Af is

known for some special cases. For RFDE's, this is obviously true since

Tf(t)x is defined for t < 0. We remark that this is true for x E Af and

not for every x E C. For certain NFDE's, it is also known to be true (see

Hale [7]).

The results in PDE's generally relate to the differentiability of

Tf(t)x for x in a very large class (see Marsden and McCracken [26]). It

should be possible to obtain better results if one restricts x to be in A

In a personal communication, 0. Lopes has shown that periodic orbits

are always continuously differentiable for the abstract semigroups Tf(t) =

Sf(t) + Uf(t) above.

In studying the properties of semigroups Tf(t) which are generic in

f, the "size" of the space of functions f plays an important role. For ex-

ample, if one is attempting to prove that a periodic orbit may be assumed to

be hyperbolic generically in f, then the space of functions must be large

enough to move the characteristic multipliers that are on the unit circle in

any direction whatsoever by an appropriate variation of f. The same difficulty

arises with any other property being discussed. When there are more restric-

tions on the vector field, the characterization of properties which are generic

becomes more difficult. We are certainly familiar with similar difficulties in

finite dimensional problems; for example, restrictions to vector fields corres-

ponding to Hamiltonian systems, electric circuits, learning models, population

A
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models, etc. In infinite dimensional systems, there is even more flexibility

in the choice of the vector field. These restrictions sometimes may he

natural or may be imposed to make the problem easier to discuss. Also, each

system has a specific role to play in applications.

For retarded functional differential equations, for example, one could

be considering either of the following equations

x(t) = f(xt)

x(t) = f(x(t),x(t-1))

x(t) = f(x(t-1))

with, respectively, f E Cr([l,O] Rn), f E Cr (Rn × nlRn) f E Cr ORnJR n . All

of these equations are retarded functional differential equations x(t) = F(x t )

with F, respectively, being FQ( ) = f((p), F((p) = f((p(O),qp(-l)), F((p) = f((P(-I)).

For the first two cases, Mallet-Paret [21,221 has shown that the Kupka-Smale

systems are generic.

For the third case, x(t) = f(x(t-1)), nothing is known except

that one may assume the equilibrium points are hyperbolic generically.

This is especially interesting since this equation is certainly the one

that is most often discussed in the literature as far as the existence

of periodic orbits is concerned (see Nussbaum [33] for references). On the

other hand, in many of the applications, this equation arose through a trans-

formation of variables of an equation of the form

j(t) = ay(t) + g(y(t-1)).

Perhaps one can prove that the Kupka-Smale systems are generic in this class.
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For parabolic equations very little is known about Kupka-Stia.lc systems.

There are even several technical difficulties that arise in the discussion of

hyperbolicity of the equilibrium solutions. To be more specific, considcr

the scalar, one-dimensional parabolic equation

u t  Uxx+ g(x,u), 0 < x < I

u = 0 at x = 0, x = 1,

where g E C r x RR). In this case, it is not difficult to show that the

equilibrium points are hyperbolic generically in g. The reason for this is

the fact that the function g is allowed to depend upon x.

On the other hand, if g(x,u) = f(u) where f E cr ( ) is independent

of x and u (x) is an equilibrium point for f0, then the lineair variational

0equation about u depends on x. One must now prove that it is possible to

move the spectrum of this linear operator by choosing f(u) in a neighborhood

of fO(u) independent of x. This is a nontrivial problem. Smoller and

Wasserman [37] have given an example where hyperbolicity can be determined in a

class of f(u). Brunovsky and Chow [2] have shown that it always occurs

generically in f. More precisely, suppose u(x,n,f) is the solution of

Uxx + f(u) = 0 with u(O) = 0, ux (0) = n and let Df = In : u(x,n,f) is zero

for some x > 0}. For any n E Df, let T(ri,f) > 0 be the first positive

zero of u(x,n,f). Brunovsky and Chow [21 prove the following result.

Theorem.4. There is a residual set _c (space of C2 functions f endowed

with the Whitney topology} such that, for any f E Y, the function T(rf)

is a Morse function. Furthermore, there is a residual set c' C £9 such that,

for each f EY', if T(n,f) = 1/n for some integer n = 1,2,..., then



3T(n,f)/3n 0 0. In particular, the equilibrium points of

ut = Uxx +f(u) 0 < x < I

u = 0 at x = 0,1

are hyperbolic generically in f.

This theorem also implies that, generically in f, the bifurcation

of equilibrium points occur as saddle-node bifurcations for Eq. (1)

It does not seem to be possible to extend the proof of Brunovsky and

Chow [2] to several space dimensions. Also, in several space dimensions, one

probably should include the domain fl with the vector field f Ln the

discussion of generic properties since the shape of Q2 sometimes determines

the multiplicity of eigenvalues.

The discussion of the genericity of the property of the transversal

interse,-tion of stable and unstable manifolds for general parabolic equations

has no. been considered. Henry [14] has given specific examples where he ha:-s

4 shuwn that this property does hold. These examples are also structurally stable.

For the above scalar one-dimensional parabolic equations on a bounded

interval, no one has given an example where the equilibrium points are hyper-

bolic and the stable and unstable manifolds intersect nontransversally. After

spending some time trying, unsuccessfully, to construct such an example, I con-

jecture that no such example exists. If this is the case, then these equations

are Kupka-Smale if and only if the equilibrium points are hyperbolic. Further-

more, the only way the topological structure of the flow can change on a generic

set of f is through saddle-node bifurcations from the result of Brunovsky and
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Chow. Even if the above conjecture is generally false, it would be interest-

ing to characterize those £ for which it is true.

A vector field f is Morse-Smale if it is Kupka-Smale with a finite

number of critical points and periodic orbits with the set of nonwandering

points 0(f) equal to the set of critical points and periodic orbits. In

this case, Af should be the union of the unstable manifolds for the critical

points and periodic orbits. It is not known if such a system is structurally

stable.

One can define Axiom A as in finite dimensions and it would be very

interesting to prove that the analogue of the Smale decomposition theorem holds.

Let us now give some simple examples to illustrate several of the

remarks above. Consider the scalar one-dimensional parabolic equation

u t = + A(u-u3), 0 < x < , t > 0

u = 0 at x = 0,7

4 where is a real parameter. This equation defines a strongly continuous

semigroup T (t), t > 0, on Ho(O,w) (see, for example, Henry [141).

If

ri-1 - 2 4
V(P) = x - X ( jdx

for (pE 110 (0,7), then V(u(t,.)), the derivative of V along the solutions

of (2), satisfies

V ~ ~u') 2- - < 0.

This implies every solution of (2) is bounded for t > 0. Also, every hounded

orbit has compact closure which implies the w-limit set exists. By the
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invariance principle, the w-limit set of each orbit belongs to the set of

equilibrium points; that is, a solution in HI (O,) of the equation

0 = u + (u-u 3), 0 < x < 3,xx (3),

u = 0 at x = 0,n.

This result was essentially proved by Chafee and Infante [5]. It is also

known that the u-limit set of each bounded solution (even for general vector

field f(u)) consists of only one equilibrium point (see Matano [301. Hale

and Massatt [12]).

The next step is to analyze how A., the maximal compact invariant

set,depends upon A. The eigenvalues of the linear variational equation for

2the zero solution are Xn = n , n z 1,2,.... At each A , two hyperbolic

solutions cp, (0 bifurcate from zero. Henry [14] proves that these are the
nn

only points of bifurcation and, for An < A < there are exactly 2n+

equilibrium solutions with the unstable manifolds WU(p ), WU((o;) of Ili, 'i

having dimension j - 1. In this interval of A, the unstable manifold Wu ))

of 0 has dimension n.

Let E be the set of equilibrium points for a given X. For

An < A < An+ 1 the set AA is given by AA L- EAWu(P) = closure of WN (0)

and has dimension n. If the stable and unstable manifolds of the equilibrium

points always intersect transversally, then Eq. (2) is structurally stable.

Henry proves this is the case for 0 < X < 1, 1 < A < 4, 4 < A < 9, 9 A l1.

For the latter interval, the oddness of f(u) = u - u3 was exploited. The other

cases hold for general f(u).

It is the belief of the author that the transversal intersection property

1't
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always holds and the proof of this fact must exploit more detailed properties

of the solutions of Eq. (2). The recent results of Matano [31) on the change

of complexity of solutions with increasing time perhaps could play a role and

do, in fact, make it easier to obtain the results of Henry [14]. It is reason-

able to refer to Eq. (2) as a gradient flow since formally ut =-grad V(u) in

110(O,r). One can define gradient flows in several space dimensions and vecloy

functions u (see Henry [141). It would be very interesting to know if

gradient Morse-Smale systems are open and dense. No results in this direction

seem to be available.

The scalar one-dimensional equation (2) behaves qualitatively as a

scalar ordinary differential equation with the analogy being complete if we

knew that stable and unstable manifolds for hyperbolic equilibria always inter-

sect transversally. In several respects, retarded functional differential

equations generate semigroups which have several properties in common with

parabolic equations. However, in detail, these equations behave quite different-

ly with the retarded equations having a more complicated orbit structure. We

give an example to illustrate these remarks.

Consider the scalar equation

0
X(t) -I a(-e)g(x(t+O))do 1)

where g E C2(IRIR), a E C2([O,l],JR), G(x) g -- as 1xi -, a(I) 0,

a(s) :0 , a(s) < 0, >i(s) ' 0. We consider Eq. (3) for initial data in C((-IA.OJ) .

For Eq. (4), Levin and Nohel 120] exhibited a Liapunov function

VM G (ap(0)) g(Ps) ) d 2do

L i
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whose derivative V along the solutions of (4) is given by

I. r 9  d2 1 O ds]2d .
-- r u

Using the invariance principle, one can then prove the following result LsCe

Hale [7]).

Theorem 5. Every orbit of Eq. (4) is bounded and has an u-limit set. If ,

has isolated zeros, then

(i) If there is an s such that A(s) > 0, then the w-limit set

of any orbit is a constant function corresponding to a zero of g;

(ii) If a(s) = 0 for all s and a t 0, then the w-limit set of any

orbit is a periodic orbit of period I generated by a In)riodic

solution of the ordinary equation

+ a(O)g(x) = 0.

Let us consider first a special case of (i); namely, H(s) > 0 for

s E (0,1), and the zeros aI < aL <...< '2k+l of g are simple. Let A

be the attractor for Eq. (4). We want to study the dependence of A, on g,

- - keeping a fixed. One can show that each equilibrium point is hYprbolic,

j+ I are stable, j = 0,1,..., k, t2j are saddle points with unstable

manifold IWu (a,) having dimension one, j = 1,2,... k. Thus, the ;ittractor
2k+ I

Aa,g Us=l u(a ) is one dimensional.

The basic question is the following: to which equilibrium poin ts._do

the orbits on an unstable manifold Wu(,2j) tend? Is it always true that these

orbits tend to u2j-l and a2j+l ? Surprisingly, the answor to thc latter
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question is negative and there can exist saddle-connect ions. This means the

topological structure of the flow can change without having a bifurcation of

equilibrium in contrast to what we believe is happening in the scalar one-

dimensional parabolic Eq. (1). To state a precise result, suppose k = 2,

that is, there are five simple zeros of g, al, <  S S I f th

symbol i 2 j(ak,,a) designates that the saddle point is connected by

its unstable manifold to ak,,t then the orbit structure on Aa,9 is

determined by a pair [u 2(ak,al), H4(C'mnan)]  Hale and Rybakowski I13 have

shown that each of the following orbit structures can be attained bY choosing

g appropriatt-k, in the above class:

i 2 ( t1 , 3 } ,  (LPL3,CS) ]

[L2(oal ,cS), c 4 ( 3 ,ca5 )

The first case corresponds to the natural order of the reals on A a,g te

second and fourth cases correspond to saddle connections; the third and til'th

cases reverse the natural order of the reals. The first, third and fifth

cases remain for small perturbations of g. Although the second and fourth

cases seem as if they should not remain after appropriately smaI I pert urhat iInsK
of g, but the authors have been unable to prove this fact and thus, the

question is open: Is the set of g for which saddle-connections exist nongencric?

Let us now suppose that a(s) = a0(s) is linear and, in particilar,

ki



that a 0 (s)

thatao~ =41 2(1-s). Also, suppose g is restricted to the class of

functions such that xg(x) > 0) for x $ 0, g' (0) = 1. Then the I inlilr

variational equation about x = 0 has two eigenvalues on the .ilnagilriry axi s

with the remaining ones- having negat ive real parts. In this case, it is

natural to discuss the bifurcation of periodic orbits from zero whiichi arise

by smnall variations in a 0 or g. To do this, one must comnput e the hi furca-

Ition function at (kaU .g) and determine the first nonv'anishing coeffic ients

in the Taylor expansion. The generic Hopf bifurcation corresponds to the

coefficient 'a of the cubic terms being J 0. It has bcen shotin by

Hae I lc110 that t 0 for ail I gin the above class and, therctfoi-k, a

generic__IRLf bifucationp can never oCcur. It is not known if there OXe' CXi St

any coeffi cieont in the Taylor series of the bifurcation fuiict i on wh ich i s not

zero.

The two preceding examples illustrate clearly that importantI qmiie't iOnis

in the qualitative theory of infinite dimensional systems arise in the simplest

of systems. It is not easy to outline a general direction of research that

shuuld be pursued. On the other hand, it is clear that one shouild first

determine the extent to which infinite dimensional systems share the goneral

qualitative properties that are known for ordinary di fferential equtat ion!:.; for

example, the gecricity of Kupka-Smale systems, the structural -stability

propert ies of Morse-Smale systems, the decomnposit ion theorem of Simle for

systems that satisfy Axiom A, etc.

rhe preceding discussion shows that these questions are difficult in

the most elementary examples. Examples of this typic need to be discusse-d in

great detail in order to develop the methods and intuition to proceed to more
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general cases. In scalar one-dimensional parabolic equations above, for

instance, important properties of the system were not being used extciisiv cl

in particular, the maximum principle. What role, if any, does it p1 :ik- in

these qualitative investigations?

The example of the retarded equation exhibited flows with ;j more com

plicated qualitative behavior by the introduction of saddle connect ions.

Perhaps this is to be expected since the equation must define a flow iii

infinite dimensions. On the other hand, so did the parabolic equation. Whait

makes the retarded equation more complicated? What types of flows can hc

generated by a scalar retarded equation?

Very complicated chaotic type of motions have been observed ill

applications of scalar retarded equations (see, for example, Lasota ;,mi

Wa-(:wska-Cz'z ewska [19], Lasota [18], Class and Mackuy [(,J. Peters [.

Walther [38) have actually proved that chaos occurs in equations

,x(t) = f(x(t-1)) for some nonlinear functions f. It should not be strprising,

that complicated dynamics might occur since mappings on the interval exhibit

such behavior. However, this is pure speculation and the proces itniolv ed is

not understood. For example, consider the equation

x(t) = x(t) - f (x(t-l)) 5)

where fX(x) depends on a real parameter X. Suppose that the interval map

x(t) = fx(t-l)) has successive bifurcations of periodic points through

period doubling as ) increases and, fur some value of , "chaut ic" not ion

occurs. Under what conditions do these periodic points correspoikd to pcriodic

orbits of (5) and when does a chaotic motion occur in ( A)? , version ol lhis



-1 9-

problem presently is being studied by Chow and Ntallet-Paret for the equation

Vi(t) = x(t) - fx(x(t-1)) (6)

where p is a small parameter. Preliminary investigations indicate that the

bifurcation phenomena in (6) is much more complicated than the corresponding

one for the interval map.

4
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